
www.sanuz-r.co.nr

1 of 6 6/2/2007 1:00 AM

 HOME

 PRODUCTS

 SERVICES

 CLIENTS

 CONTACT US

Sections:

Short introduction to AVR instruction set

Introduction to AVR peripheral access
How to open an existing project in AVR Studio

How to create a new project in AVR Studio using the AVR GCC plugin
How to simulate a project in AVR Studio

How to edit and build a project using Programmers Notepad 2

How to create a new Makefile if not using AVR Studio

How to use the XMODEM-CRC bootloader
Tutorial 01 - Port IO

Tutorial 02 - Timers

Tutorial 03 - Interrupts

Tutorial 04 - USARTs

Tutorial 05 - Printf

Tutorial 06 - PWM
Tutorial 07 - ADC

Tutorial 08 - Sleep Mode

Tutorial 09 - EEPROM

Tutorial 10 - RTC

Tutorial 11 - Assembler

Tutorial 12 - Power Management
Tutorial 13 - External Memory

History Log

Short introduction to AVR instruction set

The AVR core has an advanced RISC architecture with most of the instructions being executed in a single clock

cycle. The AVR uses a Harvard architecture with separated access to program and data. A load/store assembler

instruction set is implemented with 32 general purpose registers (R0 to R31). The instructions are divided into

the following categories:

Arithmetic and Logic Instructions
e.g. add Rd,Rr (Add without Carry : Rd = Rd + Rr)

Branch Instructions

e.g. rjmp k (Relative Jump : PC = PC + k + 1)

Data Transfer Instructions

e.g. mov Rd,Rr (Copy register : Rd = Rr)

Bit and Bit-test Instructions

e.g. sbi P,b (Set bit in I/O register : I/O(P,b) = 1)

The quickest way to learn the assembler instruction set is to refer to the Compiled Help file of Atmel AVR

Studio:
Help > AVR Tools User Guide > AVR Assembler > Parts > ATmega128/1280/1281 and AT90CAN128 Instruction

Set

The Status Register(SREG) contains flags that convey information about the most recently executed

arithmetic instruction. Bit 7 (I) is different, as it is the flag that enables/disables interrupts globally:

SREG:

Bit 7 – I: Global Interrupt Enable

Bit 6 – T: Bit Copy Storage

Bit 5 – H: Half Carry Flag
Bit 4 – S: Sign Bit

Bit 3 – V: Two’s Complement Overflow Flag

Bit 2 – N: Negative Flag

Bit 1 – Z: Zero Flag

Bit 0 – C: Carry Flag

Introduction to AVR peripheral access

Tip: this section appears daunting, but will become essential knowledge on your way to master the AVR. Skim

through it now, and return to read it in depth after working through "Tutorial 01 - Port IO".

All of the AVR peripherals are manipulated by writing to and reading from the Peripheral Control Registers.

Refer to "Register Summary" of the ATmega128 datasheet (p.365)

Here is a condensed visual representation of the ATmega128 memory map to highlight the Harvard

architecture and access to the Peripheral Control Registers:

Piconomic Design Atmel AVR Course

Forex Classes & Training

Online Forex Tutorials and

Classes. All the Tools You

Need. Start Now!
www.FOREX.com

Embedded C Compilers

Cut firmware development

time ANSI C - fast, reliable

code
www.htsoft.com

Free Download

LogMeIn - Really 100%

Free & Easy Access to

PCs from Anywhere
www.LogMeIn.com

FTDI USB Peripheral IC's

Discover our popular

range of USB Interface

Devices and Modules
www.ftdichip.com

8051 development tools

Compiler, Assembler,

Simulator, IDE Free 4kb

version. CodeCompressor.
www.8051tools.com

PICONOMIC DESIGN – Atmel AVR Course http://www.piconomic.co.za/avr2.php#avr_instruction_set

2 of 6 6/2/2007 1:00 AM

The memory map will make more sense after working through the tutorials, but it is displayed here to point out

a specific mental stumbling block on the GCC / AVR-LIBC learning curve ("SFRs - Special Function Registers").

The data memory load/store instructions provide a different method to access the the general purpose

registers (R0 to R31) and the I/O memory (0x00 to 0x3F). Thus the following assembler instructions are

equivalent, but not optimal:

mov R16,R17 <--> lds R16,0x0017 (R17 can be accessed at address 0x0017 in data space)

and

in R19,0x00 <--> lds R19, 0x0020 ("PINF" is mapped to 0x00 in I/O space andaddress 0x0020 in data

space).

To access the other Peripheral Control Registers that do not fit into I/O space (which have optimal bit
manipulation instructions), data space load/store instructions must be used.

Luckily, the compiler takes care of these details in the background.

Here are two examples:

1. I/O space (DDRB - 0x17)

C: DDRB |= (1<<6); // Set I/O pin PB6 to output

Assembler: sbi 0x17,6;

2. Data space (DDRF - 0x61)

C: DDRF |= (1<<5); // Set I/O pin PF5 to output

Assembler: lds R24,0x61;

 ori R24,32;
 sts ;0x61,R24;

Access to Data memory mapped peripherals is not as efficient as I/O memory mapped peripherals.

How to open an existing project in AVR Studio

AVR Studio offers a complete integrated development environment: editor, build system, simulator, debugger,

programmer,...

All of the tutorials, bootloader and firmware framework are provided with a pre-configured AVR Studio project.

External Makefiles are referenced, in stead of AVR Studio's build system, to support non-Windows users.

An existing project can be opened by navigating to the AVR Studio menu "Project>Open Project" and selecting

the "*.aps" file, e.g. "..\Tutorials\01 Port IO\PortIO.aps"

PICONOMIC DESIGN – Atmel AVR Course http://www.piconomic.co.za/avr2.php#avr_instruction_set

3 of 6 6/2/2007 1:00 AM

How to create a new project in AVR Studio using the AVR GCC plugin

Here are the steps to create a new AVR GCC project in AVR Studio:

1. Navigate to the AVR Studio menu "Project>New Project" and select "AVR GCC" as project type.

2. Type a project name, e.g. "PortIO" and create an inital C file, e.g. "PortIO.c"

3. Select a location, e.g. "C:\Tutorials" and create a folder.

4. Select "Next>" and choose "AVR Simulator" and "ATmega128" as the device.

You can change this choice at a later stage by navigating to "Debug>Select Platform and Device..."

5. Select Finish. Your new C file will now be created and open for editing.

6. The build options, which changes an AVR Studio generated Makefile, is selected by navigating to "Project >

Configuration Options". Set the frequency to 7372800 (7.3728 MHz) and optimization to -Os (optimized for

size) and select OK.

PICONOMIC DESIGN – Atmel AVR Course http://www.piconomic.co.za/avr2.php#avr_instruction_set

4 of 6 6/2/2007 1:00 AM

7. The source code can be compiled by selecting "Build > Build"

How to simulate a project in AVR Studio

AVR Studio is an invaluable development tool that should be used vigorously to simulate the code and verify

it's correctness, before downloading it to the target.

This section assumes that the code has been built successfully.

First enable cycle accurate timing information with "Debug > AVR Simulator Options", set the clock frequency

to "7.37 MHz" and "OK". This setting is saved with the project and needs only to be done once.

Select "Debug > Start Debugging". You can now single-step, set breakpoints,...

Select and expand the I/O View in the right-hand pane to view the status of the processor and the peripherals.

How to edit and build a project using Programmers Notepad 2

Programmer's Notepad may be used if you wish to edit and build the source files without using AVR Studio. It is
bundled with the WinAVR distribution.

1. Open the project in Programmer's Notepad: "File > Open Project(s)..." and select a project, e.g.

"...\Tutorials\01 Port IO\PortIO.pnproj", and "Open"

2. Delete all output files (optional) : "Tools > [WinAVR] Make Clean"

3. Build the project: "Tools > [WinAVR] Make All"

PICONOMIC DESIGN – Atmel AVR Course http://www.piconomic.co.za/avr2.php#avr_instruction_set

5 of 6 6/2/2007 1:00 AM

How to create a new Makefile if not using AVR Studio

A Makefile is used to automate the process of compiling and linking the source code of a project.

A TCL/Tk script called "Mfile" is bundled with WinAVR that automates the process of creating a new Makefile.

The other option is to copy and modify an existing Makefile.

How to use the XMODEM-CRC bootloader

1. Compile and link the firmware application and generate a binary programming file (not Intel HEX!)

Use "..\Tutorials\01 PortIO\PortIO.bin" distributed with the set of tutorials as a first test.

2. Create a new HyperTerminal serial port session, configured to 115200 BAUD, 8 Data Bits, No Parity, 1 Stop

Bit, No Flow Control.

At this stage you should verify that the communication between HyperTerminal and the board is OK, by

powering and/or resetting the board and verifying that HyperTerminal displays at least one received "C"

character.

3. Select "Transfer > Send File ... ". Select "Protocol > Xmodem". Select your application file. The screen

should look similar to image:

PICONOMIC DESIGN – Atmel AVR Course http://www.piconomic.co.za/avr2.php#avr_instruction_set

6 of 6 6/2/2007 1:00 AM

3. Select "Send".

HyperTerminal will now wait for a 'C' character from the board to start the transfer.

5. Power and/or reset the board to start the transfer.

If the transfer is successful, the HyperTerminal dialog window will disappear. The bootloader automatically

jumps to the start of the application at address 0x0000.

Final Note:

The AVR fuse bits have been set so that execution starts from the boot vector address. This means that the

bootloader will always be executed first. The bootloader sends a 'C' character to start a transfer and waits for 1

second for a valid XMODEM-CRC data packet. If the transfer is not successful, it will jump to address 0x0000

and execute the application.

A DOS batch file "AVRISP_ProgBoot.bat" has been included to automate the programming of the board with the

bootloader using an AVRISP. It also sets the fuse bits to the correct values.

Copyright © 2007 (Piconomic Design CC) All rights reserved | Legal Notice | Website by Inspirid Design Solutions

